Список вопросов и задач по курсу математического анализа во втором семестре

Тема 1. Множества точек пространства R^m .

1. Определения.

- 1.1. Сформулируйте определение шаровой окрестности точки пространства R^m .
- 1.2. Сформулируйте определение прямоугольной окрестности точки пространства R^m .
- 1.3. Сформулируйте определение окрестности точки пространства R^m .
- 1.4. Сформулируйте определение внутренней точки множества D точек пространства R^m .
- 1.5. Сформулируйте определение изолированной точки множества D точек пространства R^m .
- 1.6. Сформулируйте определение граничной точки множества D точек пространства R^m .
- 1.7. Сформулируйте определение границы множества.
- 1.8. Сформулируйте определение открытого множества точек пространства R^m .
- 1.9. Сформулируйте определение замкнутого множества точек пространства R^m .
- 1.10. Сформулируйте определение предельной точки множества D точек пространства R^m .
- 1.11. Сформулируйте определение связного множества точек пространства \mathbb{R}^m .
- 1.12. Сформулируйте определение прямой в пространстве \mathbb{R}^m .
- 1.13. Сформулируйте определение непрерывной кривой в пространстве \mathbb{R}^m .

2. Вопросы и задачи.

Замечание: Пустое множество считается одновременно открытым и замкнутым.

- 2.1. Докажите, что объединение любого числа открытых множеств является открытым множеством.
- 2.2. Докажите, что любая внутренняя точка множества является его предельной точкой.
- 2.3. Докажите, что граничная точка множества является либо предельной точкой, либо изолированной точкой этого множества.
- 2.4. Докажите, что граница сферы в пространстве R^m совпадает с самой сферой.
- 2.5. Приведите пример множества точек, которое является одновременно открытым и замкнутым.
- 2.6. Приведите пример непустого множества точек на плоскости, которое не имеет внутренних точек.
- 2.7. Может ли множество, содержащее хотя бы одну свою граничную точку, быть открытым?
- 2.8. Приведите пример непустого множества точек на плоскости, все точки которого граничные.
- 2.9. Приведите пример непустого множества точек на плоскости, все точки которого предельные.
- 2.10. Приведите пример непустого множества точек на плоскости, которое совпадает со своей границей.
- 2.11. Приведите пример непустого множества точек на плоскости, для которого множество всех предельных точек не совпадает с множеством всех граничных точек.
- 2.12. Приведите пример непустого замкнутого множества точек на плоскости, которое не имеет ни одной предельной точки.
- 2.13. Докажите, что любая точка множества точек на плоскости, которая не является внутренней, является его граничной точкой.
- 2.14. Приведите пример множества, каждая граничная точка которого является его предельной точкой.
- 2.15. Приведите пример множества, каждая граничная точка которого является его изолированной точкой.
- 2.16. Найдите все граничные точки множества точек на плоскости $\{(x,y): x^2+y^2<1\}$.
- 2.17. Найдите все предельные точки множества точек на плоскости $\{(x,y): x^2+y^2<1\}$.

- 3.1. Докажите, что дополнение к открытому множеству является замкнутым
- 3.2. Докажите, что дополнение к замкнутому множеству является открытым.

- 3.3. Докажите, что сфера в пространстве R^m является замкнутым множеством.
- 3.4. Докажите, что пересечение конечного числа открытых множеств является открытым множеством. Верно ли это для любого числа открытых множеств?
- 3.5. Докажите, что объединение конечного числа замкнутых множеств является замкнутым множеством. Верно ли это для любого числа замкнутых множеств?
- 3.6. Докажите, что пересечение любого числа замкнутых множеств является замкнутым множеством.
- 3.7. Найдите все граничные точки множества точек на плоскости $\left\{\left(\cos\frac{\pi}{n},\sin\frac{\pi}{n}\right),n\in N\right\}$.
- 3.8. Найдите все предельные точки множества точек на плоскости $\left\{\left(\cos\frac{\pi}{n},\sin\frac{\pi}{n}\right), n\in N\right\}$.
- 3.9. Найдите все множества точек на плоскости, которые не имеют граничных точек.

Тема 2. Последовательности точек пространства R^m .

1. Определения.

- 1.1. Сформулируйте определение ограниченной последовательности точек пространства \mathbb{R}^m .
- 1.2. Сформулируйте определение неограниченной последовательности точек пространства R^m .
- 1.3. Сформулируйте определение предельной точки последовательности точек пространства \mathbb{R}^m
- 1.4. Сформулируйте определение предела последовательности точек пространства R^m .
- 1.5. Сформулируйте определение сходящейся последовательности точек пространства \mathbb{R}^m .
- 1.6. Сформулируйте определение фундаментальной последовательности точек пространства \mathbb{R}^m .

2. Основные теоремы (без доказательства).

- 2.1. Сформулируйте критерий Коши сходимости последовательности точек пространства R^m .
- 2.2. Сформулируйте теорему Больцано-Вейерштрасса.

3. Теоремы с доказательством.

- 3.1. Докажите, что ограниченная последовательность точек $M_n(x_n,y_n)$ на плоскости имеет по крайней мере одну предельную точку.
- 3.2. Докажите, что если последовательность точек $M_n(x_n,y_n)$ на плоскости является сходящейся, то числовые последовательности x_n и y_n являются сходящимися.
- 3.3. Докажите, что если числовые последовательности x_n и y_n являются сходящимися, то последовательность точек $M_n(x_n,y_n)$ на плоскости является сходящейся.
- 3.4. Докажите теорему о критерии Коши сходимости последовательности точек пространства \mathbb{R}^m .

4. Вопросы и задачи.

- 4.1. Докажите, что сходящаяся последовательность точек пространства \mathbb{R}^m является ограниченной.
- 4.2. Докажите, что если числовые последовательности x_n и y_n являются сходящимися, то последовательность точек $M_n(x_n,y_n)$ на плоскости является ограниченной.
- 4.3. Докажите, что если числовые последовательности x_n и y_n являются фундаментальными, то последовательность точек $M_n(x_n,y_n)$ на плоскости является фундаментальной.
- 4.4. Докажите, что последовательность точек на плоскости, расположенных на окружности, имеет по крайней мере одну предельную точку.
- 4.5. Найдите предел последовательности точек $M_n \left(\cos \frac{\pi}{n}, \sin \frac{\pi}{n}\right)$ на плоскости.

5.1. Найдите предел последовательности точек $M_n(x_n, y_n)$ на плоскости, если $x_1 = 8$,

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{4}{x_n} \right), \ y_n = x_{2n}, \ n \in \mathbb{N}.$$

Тема 3. Функции, предел, непрерывность.

1. Определения.

- 1.1. Сформулируйте определение ограниченной сверху функции u(M), заданной на множестве D точек пространства \mathbb{R}^m .
- 1.2. Сформулируйте определение неограниченной сверху функции u(M), заданной на множестве D точек пространства R^m .
- 1.3. Сформулируйте определение ограниченной снизу функции u(M), заданной на множестве D точек пространства \mathbb{R}^m .
- 1.4. Сформулируйте определение неограниченной снизу функции u(M), заданной на множестве D точек пространства \mathbb{R}^m .
- 1.5. Сформулируйте определение точной верхней грани функции m переменных на множестве D точек пространства \mathbb{R}^m .
- 1.6. Сформулируйте определение точной нижней грани функции m переменных на множестве D точек пространства \mathbb{R}^m .
- 1.7. Сформулируйте определение "по Коши" предела функции u(M) в точке $M_0 \in \mathbb{R}^m$.
- 1.8. Сформулируйте определение "по Гейне" предела функции u(M) в точке $M_0 \in \mathbb{R}^m$.
- 1.9. Сформулируйте определение "по Гейне" предела функции u(M) при $M \to \infty$.
- 1.10. Сформулируйте определение "по Коши" предела функции u(M) при $M \to \infty$.
- 1.11. Сформулируйте определение непрерывной функции u(x,y) по переменной x в точке $M_0(x_0,y_0)$.
- 1.12. Сформулируйте определение непрерывной функции u(x,y) по совокупности переменных в точке $M_{\scriptscriptstyle 0}(x_{\scriptscriptstyle 0},y_{\scriptscriptstyle 0})$.

2. Основные теоремы (без доказательства).

- 2.1. Сформулируйте теорему о критерии Коши существования предела функции u(M) в точке $M_{\scriptscriptstyle 0} \in R_{\scriptscriptstyle m.}$
- 2.2. Сформулируйте теорему о непрерывности суммы непрерывных функций нескольких переменных.
- 2.3. Сформулируйте теорему о непрерывности произведения непрерывных функций нескольких переменных.
- 2.4. Сформулируйте теорему о непрерывности частного двух непрерывных функций нескольких переменных.
- 2.5. Сформулируйте теорему о прохождении непрерывной функции нескольких переменных через любое промежуточное значение.
- 2.6. Сформулируйте первую теорему Вейерштрасса для функции нескольких переменных.
- 2.7. Сформулируйте вторую теорему Вейерштрасса для функции нескольких переменных.
- 2.8. Сформулируйте теорему о непрерывности сложной функции нескольких переменных.
- 2.9. Сформулируйте теорему Кантора для функции нескольких переменных.

3. Теоремы с доказательством.

- 3.1. Докажите теорему о непрерывности суммы двух непрерывных функций нескольких переменных.
- 3.2. Докажите теорему о непрерывности произведения двух непрерывных функций нескольких переменных.

- 3.3. Докажите теорему о непрерывности частного двух непрерывных функций нескольких переменных.
- 3.4. Докажите теорему о непрерывности сложной функции нескольких переменных.
- 3.5. Докажите теорему о прохождении непрерывной функции нескольких переменных через любое промежуточное значение.
- 3.6. Докажите первую теорему Вейерштрасса для функции нескольких переменных.
- 3.7. Докажите вторую теорему Вейерштрасса для функции нескольких переменных.
- 3.8. Докажите теорему Кантора для функции нескольких переменных.

- 4.1. Сформулируйте определение "по Коши" того, что функция u(M) не имеет предела в точке M_0 .
- 4.2. Сформулируйте определение "по Коши" того, что функция u(M) не имеет предела при $M \to \infty$
- 4.3. Сформулируйте определение "по Гейне" того, что функция u(M) не имеет предела в точке M_0 .
- 4.4. Сформулируйте определение "по Гейне" того, что функция u(M) не имеет предела при $M \to \infty$.
- 4.5. Сформулируйте "по Гейне" отрицание того, что число b является пределом функции u(M) точке $M_{\scriptscriptstyle 0}$.
- 4.6. Нарисуйте семейство линий уровня функции
 - 4.6.1. u(x,y) = xy.
 - 4.6.2. $u(x,y) = \frac{y}{x}$.
 - 4.6.3. $u(x,y) = \frac{y}{x^2}$.
 - 4.6.4. $u(x,y) = x^2 + 2xy + y^2$.
 - 4.6.5. $u(x,y) = \frac{x^2 + y^2}{2x}$.
 - 4.6.6. $u(x,y) = \frac{x^2 + y^2}{2x + 2y}$.
 - 4.6.7. $u(x,y) = \frac{2xy}{x^2 + y^2}$.
- 4.7. Приведите пример ограниченной сверху и неограниченной снизу функции, определённой на множестве $\{(x,y): x^2+y^2\leq 1\}$.
- 4.8. Приведите пример неограниченной сверху и ограниченной снизу функции, определённой на множестве $\{(x,y): x^2+y^2>1\}$.
- 4.9. Приведите пример неограниченной снизу и неограниченной сверху функции, определённой на множестве $\{(x,y): x^2+y^2>1\}$.
- 4.10. Приведите пример функции двух переменных, которая является равномерно непрерывной на заданном множестве.
- 4.11. Приведите пример непрерывной функции, которая не является равномерно непрерывной на заданном множестве.
- 4.12. Приведите пример функции двух переменных, которая непрерывна на заданном ограниченном, но незамкнутом множестве, и является неограниченной на этом множестве.
- 4.13. Приведите пример функции двух переменных, которая непрерывна и ограничена на заданном ограниченном множестве, но не достигает на этом множестве своей точной верхней грани.
- 4.14. Найдите предел функции u(x,y) при $M(x,y) \to \infty$ или докажите, что предел не существует:

$$u(x,y) = \frac{x^2 + y^2}{x^4 + y^4}; \quad u(x,y) = \frac{x^3 + y^3}{x^4 + y^4}; \quad u(x,y) = \frac{x^2 + y^2}{x^2 + xy + y^2}; \quad u(x,y) = xy \sin \frac{1}{x^2 + y^2};$$
$$u(x,y) = (x^2 + y^2) \sin \frac{1}{x^2 + y^2}.$$

Задачи повышенной трудности.

5.1. Исследуйте функцию на непрерывность по каждой из переменных и по совокупности переменных в заданной точке.

5.1.1.
$$u(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0 \end{cases}$$
 в точке $(0,0)$;

5.1.2.
$$u(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0 \end{cases}$$
 в точке $(0,0)$;

5.1.2.
$$u(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0 \end{cases}$$
 в точке $(0,0)$;

5.1.3. $u(x,y) = \begin{cases} \frac{e^{x^2 + y^2} - 1}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 \neq 0, \end{cases}$ в точке $(0,0)$;

 $0, & x^2 + y^2 = 0$

5.1.4. $u(x,y) = \begin{cases} \frac{\sin(xy)}{xy}, & xy \neq 0, \\ 1, & xy = 0 \end{cases}$ в точках $(0,0)$ и $(0,1)$;

5.1.4.
$$u(x,y) = \begin{cases} \frac{\sin(xy)}{xy}, & xy \neq 0, \\ 1, & xy = 0 \end{cases}$$
 в точках $(0,0)$ и $(0,1)$;

$$5.1.5. \quad u(x,y) = \begin{cases} \frac{\sin(xy)}{x}, & x \neq 0, \\ 1, & x = 0 \end{cases}$$
 в точках $(0,0), (1,0), (0,1);$

5.1.6.
$$u(x,y) = \begin{cases} \frac{\sin(xy)}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ 1, & x^2 + y^2 = 0 \end{cases}$$
 в точке $(0,0)$.

5.1.7.
$$u(x,y) = \begin{cases} xy \ln(|xy|), & xy \neq 0, \\ 0, & xy = 0 \end{cases}$$
 в точке $(0,0)$.

5.1.8.
$$u(x,y) = \begin{cases} x\ln(|xy|), & xy \neq 0, \\ 0, & xy = 0 \end{cases}$$
 в точке $(0,0)$.

5.1.7.
$$u(x,y) = \begin{cases} xy \ln(|xy|), & xy \neq 0, \\ 0, & xy = 0 \end{cases}$$
 в точке $(0,0)$.

5.1.8.
$$u(x,y) = \begin{cases} x \ln(|xy|), & xy \neq 0, \\ 0, & xy = 0 \end{cases}$$
 в точке $(0,0)$.

Тема 4. Дифференцируемые функции.

1. Определения.

- 1.1. Сформулируйте определение дифференцируемой функции $f(x_1, ..., x_m)$ в точке $M(x_1, x_2, ..., x_m)$.
- 1.2. Сформулируйте определение частной производной функции $f(x_1, ..., x_m)$ по переменной x_k в точке $M(x_1, x_2, ..., x_m)$.
- 1.3. Сформулируйте определение первого дифференциала функции нескольких переменных.
- 1.4. Сформулируйте определение касательной плоскости к графику функции z = f(x, y) в точке $M_{0}(x_{0}, y_{0}, f(x_{0}, y_{0})).$

- 1.5. Сформулируйте определение n раз дифференцируемой функции нескольких переменных в данной точке.
- 1.6. Сформулируйте определение второго дифференциала функции $u(x_1,...,x_m)$ в данной точке.
- 1.7. Сформулируйте определение n ого дифференциала функции $u(x_1,...,x_m)$ в данной точке.
- 1.8. Сформулируйте определение градиента функции f(x, y, z) в данной точке $M(x_0, y_0, z_0)$.
- 1.9. Сформулируйте определение производной по направлению $\vec{l} = (\cos \alpha, \cos \beta, \cos \gamma)$ для функции f(x,y,z) в точке $M(x_0,y_0,z_0)$.

2. Основные теоремы и формулы (без доказательства).

- 2.1. Сформулируйте теорему о необходимых условиях дифференцируемости функции u(x,y) в точке
- 2.2. Сформулируйте теорему о достаточных условиях дифференцируемости функции $f(x_1,...,x_m)$ в точке $M_0(\mathring{x}_1,\mathring{x}_2,...,\mathring{x}_m)$.
- 2.3. Сформулируйте теорему о достаточных условиях равенства $u_{xy} = u_{yx}$ в данной точке.
- 2.4. Сформулируйте теорему о касательной плоскости к графику функции двух переменных.
- 2.5. Сформулируйте теорему о дифференцируемости сложной функции.
- 2.6. Запишите формулу для частных производных сложной функции.
- 2.7. Запишите выражение производной функции f(x, y, z) по заданному направлению в данной точке через частные производные функции в этой точке.
- 2.8. Запишите выражение производной функции f(x, y, z) по заданному направлению в данной точке через градиент функции в этой точке.
- 2.9. Запишите формулу Лагранжа конечных приращений для функции нескольких переменных. При каких условиях эта формула верна?
- 2.10. Запишите выражение для второго дифференциала функции нескольких независимых переменных.
- 2.11. Запишите выражение для дифференциала n –го порядка функции нескольких независимых переменных.
- 2.12. Запишите выражение для второго дифференциала сложной функции нескольких переменных.
- 2.13. Сформулируйте теорему о формуле Тейлора с остаточным членом в форме Лагранжа для функции $f(x_1,...,x_m)$ с центром разложения в точке $M_0(\mathring{x}_1,\mathring{x}_2,...,\mathring{x}_m)$.
- 2.14. Сформулируйте теорему о формуле Тейлора с остаточным членом в форме Пеано для функции $f(x_1,...,x_m)$ с центром разложения в точке $M_0(\mathring{x}_1,\mathring{x}_2,...,\mathring{x}_m)$.

3. Теоремы с доказательством.

- 3.1.Докажите теорему о необходимых условиях дифференцируемости функции $f(x_1,...,x_m)$ в точке $M_0(\mathring{x}_1,\mathring{x}_2,...,\mathring{x}_m)$.
- 3.2. Докажите теорему о достаточных условиях дифференцируемости функции $f(x_1,...,x_m)$ в точке $M_0(\mathring{x}_1,\mathring{x}_2,...,\mathring{x}_m)$.
- 3.3. Докажите теорему о достаточных условиях равенства $u_{xy} = u_{yx}$ в данной точке.
- 3.4. Докажите теорему о касательной плоскости к графику функции двух переменных.
- 3.5. Докажите теорему о дифференцируемости сложной функции.
- 3.6. Докажите, что производная дифференцируемой в точке $M(x_0,y_0,z_0)$ функции f(x,y,z) по направлению $\vec{l}=(\cos\alpha,\cos\beta,\cos\gamma)$ равна скалярному произведению вектора \vec{l} и градиента функции f в точке M .
- 3.7.Докажите теорему о формуле Тейлора с остаточным членом в форме Лагранжа для функции $f(x_1,...,x_m)$ с центром разложения в точке $M_0(\mathring{x}_1,\mathring{x}_2,...,\mathring{x}_m)$.

- 4.1. Докажите, что если функция u(x,y) имеет частные производные первого порядка в любой точке круга единичного радиуса и $|u_x(x,y)| \le 1$, $|u_y(x,y)| \le 1$, то для любых двух точек M и N этого круга справедливо неравенство |u(M)-u(N)| < 3.
- 4.2. Что такое "инвариантность формы первого дифференциала"?
- 4.3. Что такое "неинвариантность формы дифференциала второго порядка"?
- 4.4. Пусть функция f(x) дифференцируема в точке x_1 , функция g(x) дифференцируема в точке x_2 . Докажите, что функция $u(x,y) = f(x) \cdot g(y)$ дифференцируема в точке $M = (x_1,x_2)$.
- 4.5. Пусть функция f(x) дифференцируема в точке x_1 , функция g(x) дифференцируема в точке x_2 . Докажите, что функция u(x,y)=f(x)+g(y) дифференцируема в точке $M=(x_1,x_2)$.
- 4.6. Для функции z=u(x,y) найдите частные производные первого порядка, градиент, первый и второй дифференциалы в точке M(x,y), запишите уравнение касательной плоскости к поверхности z=u(x,y) в точке M(x,y,u(x,y)), найдите вектор нормали к этой плоскости. Вычислите все указанные величины в точке $M_0(x_0,y_0)$. Вычислите производную по направлению заданного вектора \vec{L} в точке $M_0(x_0,y_0)$.
 - 4.6.1. u(x,y) = 2x + 3y, $M_0 = (3,2)$, $\vec{L} = (3,-2)$;
 - 4.6.2. $u(x,y) = 8x^2 + 2y^2 x^4 y^4$, $M_0 = (2;1)$, $\vec{L} = (-1;-1)$;
 - 4.6.3. u(x,y) = xy(3-x-y), $M_0 = (1;1)$, $\vec{L} = (-1;-1)$;
 - 4.6.4. $u(x,y) = x^2y^3(6-2x-3y)$, $M_0 = (1;1)$, $\vec{L} = (-1;-1)$;
 - 4.6.5. $u(x,y) = x^3 + y^3 3xy$ $M_0 = (1;1)$, $\vec{L} = (-1;-1)$;
 - 4.6.6. $u(x,y) = \operatorname{arctg} \frac{y}{x}$, $M_0 = (\sqrt{3},1)$, $\vec{L}_1 = (1;-\sqrt{3})$, $\vec{L}_2 = (\sqrt{3};1)$;
 - 4.6.7. $u(x,y) = x^y y^x$, $M_0 = (e;e)$, $M_1 = (1;1)$, $\overrightarrow{L} = (1;-1)$;
 - 4.6.8. $u(x,y) = x^3 x^2y + y^3 1$, \vec{L} образует угол $\frac{\pi}{6}$ с осью Ox.
- 4.7. Для функции f(x,y,z) найдите частные производные первого порядка, градиент, первый и второй дифференциалы. Вычислите все указанные величины в точке $M_0(x_0,y_0,z_0)$. Найдите производную по направлению заданного вектора \vec{L} в точке $M_0(x_0,y_0,z_0)$.
 - 4.7.1. $u(x,y,z) = x^3 + x + y + xyz$, $M_0 = (1;1;1)$, $\vec{L} = (1,1,1)$;
 - 4.7.2. $u(x,y,z) = \ln(xyz)$, x > 0, y > 0, z > 0, $M_0 = (1;1;1)$, $\vec{L} = (1,1,1)$;
 - 4.7.3. u(x,y,z) = xyz(4-x-y-z), $M_0 = (1;1;1)$, $\vec{L} = (1,1,1)$;
 - 4.7.4. $u(x,y,z) = x^3 y^4 z^5 (13 3x 4y 5z), M_0 = (1;1;1), \vec{L} = (1,1,1).$
 - 4.7.5. $u(x,y,z) = x^3 + x + y + xyz$, $M_0 = (1;1;1)$, $\vec{L} = (1,1,1)$.
- 4.8. Для функции $u\left(x,y,z\right)=e^{x^2+y^2+z^2}$ найдите $\dfrac{\partial^3 u}{\partial x^2 \partial y}, \quad \dfrac{\partial^3 u}{\partial x \partial y \partial z}.$
- 4.9. Найдите дифференциалы первого и второго порядка сложной функции u, если f дважды дифференцируемая функция, x и y независимые переменные:
 - 4.9.1. $u = f(\xi, \theta), \qquad \xi = x^2 + y^2, \quad \theta = x^2 y^2;$
 - 4.9.2. $u = f(\xi, \eta, \theta), \qquad \xi = xy, \quad \eta = x y, \quad \theta = x + y.$
- 4.10. Предполагая, что функции φ и ψ дифференцируемы достаточное число раз, проверить следующее равенство:

4.10.1.
$$\frac{1}{x}\frac{\partial z}{\partial x} + \frac{1}{y}\frac{\partial z}{\partial y} = \frac{z}{y^2}$$
, если $z = y\varphi(x^2 - y^2)$;

4.10.2.
$$x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = xy + z$$
, если $z = xy + x\varphi\left(\frac{y}{x}\right)$;

4.10.3.
$$a^2 \frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} = 0$$
, если $z = \varphi(x - ay) + \psi(x + ay)$.

4.11. Запишите формулу Тейлора порядка n с центром разложения в точке M_0 и с остаточным членом в форме Пеано для функций:

4.11.1.
$$u(x,y) = \operatorname{arctg} \frac{y}{x}, \quad M_0(2,3), \quad n=2;$$

4.11.2.
$$u = x^y$$
, $M_0(e, e)$, $n = 2$;

4.11.3.
$$u = e^x \sin y$$
, $M_0(0,0)$, $n = 3$;

4.11.4.
$$u = \ln(1 + x + y)$$
, $M_0(0,0)$, $n = 3$;

4.11.5.
$$u(x,y,z) = x^3 + x + y + xyz$$
, $M_0(x_0,y_0)$, $n=3$.

5. Задачи повышенной трудности.

- 5.1. Пусть u = f(x,y), d^2u в точке $M_0\left(x_0,y_0\right)$ существует и является положительно определённой квадратичной формой. Докажите, что при этом условии в некоторой окрестности точки $N_0\left(x_0,y_0,f\left(x_0,y_0\right)\right)$ касательная плоскость к графику функции u=f(x,y) в точке N_0 имеет единственную общую точку с графиком.
- 5.2. Имеет ли функция u(x,y) частные производные первого порядка в точке (0,0)? Если имеет, найдите их и исследуйте эти частные производные на непрерывность в точке (0,0).

$$u(x,y) = \sqrt[3]{xy(x+y)}; \quad u(x,y) = \sqrt[3]{x^2y}; \quad u(x,y) = \sqrt[3]{xy}; \quad u(x,y) = \sqrt[3]{x^3 + y^3};$$

$$u(x,y) = \sqrt[3]{xy(x^2 + y^2)}; \quad u(x,y) = \sqrt[3]{x^4 - y^4}; \quad u(x,y) = \sqrt[3]{x^5 - y^5}; \quad u(x,y) = \sqrt[3]{yx^4 + xy^4}.$$

5.3. Является ли функция u(x,y) дифференцируемой в точке(0,0)?

$$u(x,y) = \sqrt[3]{xy}\;;\;\; u(x,y) = \sqrt[3]{x^2y}\;;\;\; u(x,y) = xy \cdot \sqrt[3]{xy}\;;\;\; u(x,y) = \sqrt[3]{x^3+y^3}\;;\;\; u(x,y) = \sqrt[3]{x^4-y^4}\;;$$

$$u(x,y) = \sqrt[3]{xy(x^2+y^2)}\;;\;\; u(x,y) = \sqrt[3]{xy(x+y)}\;;\;\;\; u(x,y) = xy\ln\left(x^2+y^2\right),\,\text{если}\;x^2+y^2>0\;,$$

$$u(0,0) = 0\;;\;\;\; u(x,y) = xy\sin\left(\frac{1}{x^2+y^2}\right),\,\text{если}\;x^2+y^2>0\;,\; u(0,0) = 0\;;$$

$$u(x,y) = xy \cdot \sqrt[3]{x^3+y^3}\sin\left(\frac{1}{x^2+y^2}\right),\,\text{если}\;x^2+y^2>0\;,\; u(0,0) = 0\;.$$

- 5.4. Пусть функция u(x,y) дважды дифференцируема в точке $M_0(x_0,y_0)$ и в некоторой окрестности точки $N_0(x_0,y_0,u(x_0,y_0))$ касательная плоскость к графику функции в этой точке имеет единственную общую точку с графиком. Докажите, что второй дифференциал в указанной точке является либо положительно определённой, либо квазиположительно определенной квадратичной формой.
- 5.5. Известно, что касательная плоскость к графику в точке $N_0(x_0,y_0,u(x_0,y_0))$ дважды дифференцируемой функции z=u(x,y) имеет в любой окрестности точки N_0 не менее двух общих точек с графиком. Может ли при этом условии второй дифференциал d^2u в точке $M_0(x_0,y_0)$ являться знакоопределенной квадратичной формой?

- 5.6. Докажите, что отличный от нуля градиент дифференцируемой функции z=u(x,y) в точке $M_0\left(x_0,y_0\right)$ направлен перпендикулярно касательной к линии уровня функции u(x,y) в точке M_0 .
- 5.7. Пусть функция u(x,y) дифференцируема два раза в точке $M_0\left(x_0,y_0\right)$ и $R_3(x,y)=u(x,y)-P_2(x,y)$ остаточный член формулы Тейлора, где $P_2\left(x,y\right)$ многочлен Тейлора второго порядка. Докажите, что функция $R_3\left(x,y\right)$ и все её частные производные первого и второго порядка обращаются в нуль в точке M_0 .
- 5.8. Пусть функция u(x,y) такова, что в точке $M_0(x_0,y_0)$ $u\left(M_0\right)=0, \quad du\big|_{M_0}=0, \quad d^2u\big|_{M_0}=0$. Докажите, что $u\left(x,y\right)=o\left(\rho^2\right)$ при $\rho\to 0$, где $\rho=\sqrt{\left(x-x_0\right)^2+\left(y-y_0\right)^2}$.

Тема 5. Локальный экстремум.

- 1. Определения.
 - 1.1. Сформулируйте определение локального экстремума функции нескольких переменных.
- 2. Основные теоремы (без доказательства).
 - 2.1. Сформулируйте необходимые условия локального экстремума в точке $M_0\left(x_0,y_0\right)$ функции $u\left(x,y\right)$, дифференцируемой в этой точке.
 - 2.2. Сформулируйте достаточные условия локального экстремума в точке $M_0(x_0, y_0)$ дважды дифференцируемой в этой точке функции u(x,y).

3. Теоремы с доказательством.

- 3.1. Докажите теорему о необходимых условиях локального экстремума функции нескольких переменных.
- 3.2. Докажите теорему о достаточных условиях локального экстремума функции нескольких переменных.

- 4.1. Пусть функции u(x,y) и v(x,y) имеют локальный минимум в точке $M_0(x_0,y_0)$. Докажите, что функция u(x,y)+v(x,y) также имеет локальный минимум в указанной точке.
- 4.2. Приведите пример функций u(x,y) и v(x,y), которые имеют локальный минимум в точке $M_0(x_0,y_0)$, а функция $u(x,y)\cdot v(x,y)$ имеет локальный максимум в указанной точке.
- 4.3. Приведите пример функций u(x,y) и v(x,y), которые имеют локальный минимум в точке $M_0(x_0,y_0)$, а функция $u(x,y)\cdot v(x,y)$ не имеет локального экстремума в указанной точке.
- 4.4. Пусть функция $u(x,y)=f(x)\cdot g(y)$ имеет локальный экстремум в точке $M(x_1,x_2)$, функция f(x) дифференцируема в точке x_1 , $f(x_1)\neq 0$, функция g(x) дифференцируема в точке x_2 , $g(x_2)\neq 0$. Докажите, что $f'(x_1)=0$, $g'(x_2)=0$.
- 4.5. Пусть функция f(x) имеет локальный минимум в точке x_1 , $f(x_1)>0$, функция g(x) имеет локальный минимум в точке x_2 , $g(x_2)>0$. Докажите, что функция $u(x,y)=f(x)\cdot g(y)$ имеет локальный минимум в точке $M(x_1,x_2)$.
- 4.6. Найдите все точки локального экстремума функций:

$$u(x,y) = x^{2} + xy + y^{2}; \quad u(x,y) = x^{3} + y^{3} - 3xy; \quad u(x,y) = xy + \frac{8}{x} + \frac{8}{y};$$

$$u(x,y) = (5 - 2x + y)e^{x^{2} - y}; \quad u(x,y,z) = x^{2} + y^{2} - z^{2}; \quad u(x,y,z) = xy + xz + yz;$$

$$u(x,y,z) = xyz(4 - x - y - z); \quad u(x,y,z) = x^{2} + y^{2} + z^{2} - 2xy - 2xz - 2yz;$$

$$u(x,y,z) = x + \frac{y^2}{4x} + \frac{z^2}{y} + \frac{2}{z}$$
.

- 4.7. Исследуйте на экстремум функцию $u = x \cos y + z \cos x$ в точке $M\left(\frac{\pi}{2}; 0; 1\right)$.
- 4.8. Найдите наибольшее и наименьшее значения функции в заданной области: $u=xy-x^2y-\frac{1}{2}y^2x,\quad 0\leq x\leq 1,\quad 0\leq y\leq 2\ .$

5. Задачи повышенной трудности.

- 5.1. Докажите, что если $d^2u(M_0)$ знакопеременная квадратичная форма, то функция u не имеет локального экстремума в точке M_0 .
- 5.2. Докажите, что если в точке $M_0\left(x_0,y_0\right)$ функция u(x,y) трижды дифференцируема, $du\big|_{M_0}=0,\, d^2u\big|_{M_0}=0,\, d^3u\Big|_{M_0}\neq 0,\, \text{то функция } u\,\,\text{не имеет локального экстремума в точке }\,M_0\,.$
- 5.3. Пусть функция f(x) дважды дифференцируема в точке x_1 , $f^{'}(x_1)=0$, функция g(x) дважды дифференцируема в точке x_2 , $g^{'}(x_2)=0$, $f(x_1)g(x_2)f^{"}(x_1)g^{"}(x_2)>0$. Докажите, что функция $u(x,y)=f(x)\cdot g(y)$ имеет локальный экстремум в точке $M(x_1,x_2)$.
- 5.4. Пусть функция f(x) имеет локальный минимум в точке x_1 , $f(x_1) > 0$, функция g(x) имеет локальный максимум в точке x_2 , $g(x_2) > 0$. Докажите, что функция $u(x,y) = f(x) \cdot g(y)$ не имеет локального экстремума в точке $M(x_1,x_2)$.
- 5.5. Пусть функция u(x,y) имеет локальный минимум в точке $M_0\left(x_0,y_0\right)$, а функции $x=\varphi(t,s)$ и $y=\psi(t,s)$ имеют отличный от нуля первый дифференциал в точке $K_0\left(s_0,t_0\right)$, причем $x_0=\varphi(t_0,s_0)$ и $y_0=\psi(t_0,s_0)$. Докажите, что сложная функция $u\left(\varphi(t,s),\psi(t,s)\right)$ имеет локальный минимум в точке K_0 .
- 5.6. Пусть непрерывные функции $x=\varphi(t,s)$ и $y=\psi(t,s)$ имеют локальный максимум в точке $K_0\left(s_0,t_0\right)$, а дифференцируемая в точке $M_0\left(x_0,y_0\right)$ функция u(x,y) такова, что $\frac{\partial u}{\partial x}(M_0)>0$ и $\frac{\partial u}{\partial y}(M_0)>0$, причем $x_0=\varphi(t_0,s_0)$ и $y_0=\psi(t_0,s_0)$. Докажите, что сложная функция $u\left(\varphi(t,s),\psi(t,s)\right)$ имеет локальный максимум в точке K_0 .

Тема 6. Неявные функции

1. Определения.

- 1.1. Сформулируйте определение зависимости функций $f_1(x_2,...,x_n),...,f_k(x_2,...,x_n)$.
- 1.2. Сформулируйте определение независимости функций $f_1(x_2,...,x_n),...,f_k(x_2,...,x_n)$.

2. Основные теоремы (без доказательства).

- 2.1. Сформулируйте теорему о существовании и непрерывности функции y = f(x), заданной неявно уравнением F(x,y) = 0.
- 2.2. Сформулируйте теорему о дифференцируемости функции y = f(x), заданной неявно уравнением F(x,y) = 0.
- 2.3. Сформулируйте теорему о существовании и непрерывности функции z = f(x, y), заданной неявно уравнением F(x, y, z) = 0.
- 2.4. Сформулируйте теорему о дифференцируемости функции $z=f\left(x,y\right) ,$ заданной неявно уравнением $F\left(x,y,z\right) =0$.

Московский государственный университет

Физический факультет

- 2.5. Сформулируйте теорему о существовании и дифференцируемости функций $y=f(x),\ z=g(x)$, заданных неявно системой уравнений $\begin{cases} F\left(x,y,z\right)=0,\\ G\left(x,y,z\right)=0. \end{cases}$
- 2.6. Сформулируйте теорему о достаточных условиях независимости функций.
- 2.7. Сформулируйте теорему о зависимости и независимости функций.

3. Теоремы с доказательством.

- 3.1. Докажите теорему о существовании и непрерывности функции y = f(x), заданной неявно уравнением F(x,y) = 0.
- 3.2. Докажите теорему о дифференцируемости функции y = f(x), заданной неявно уравнением F(x,y) = 0.
- 3.3. Докажите теорему о существовании и непрерывности функции z = f(x, y), заданной неявно уравнением F(x, y, z) = 0.
- 3.4. Докажите теорему о существовании и дифференцируемости функций y=f(x), z=g(x), заданных неявно системой уравнений $\begin{cases} F\left(x,y,z\right)=0,\\ G\left(x,y,z\right)=0. \end{cases}$
- 3.5. Докажите теорему о достаточных условиях независимости функций.

- 4.1. Докажите, что уравнение $x^2 + xy + y^2 = 3$ окрестности точки (1;1) однозначно определяет функцию y = y(x).
- 4.2. Докажите, что уравнение $xy + \ln(xy) = 1$ в окрестности точки (2; 0.5) однозначно определяет функцию y = y(x).
- 4.3. Пусть функции y = u(x), z = v(x) заданы системой уравнений f(x, y, z) = 0, g(x, y, z) = 0. Вычислите первый дифференциал функции u(x).
- 4.4. Пусть функции $x=f(u,v), \quad y=g(u,v)$ заданы неявно системой уравнений $\begin{cases} F(x,y)=u,\\ G(x,y)=v. \end{cases}$ Найдите $\frac{\partial x}{\partial v}$.
- 4.5. Пусть функции $y=f(x), \quad z=g(x)$ заданы неявно системой уравнений $\begin{cases} F\left(x,y,z\right)=0,\\ G\left(x,y,z\right)=0. \end{cases}$ Найдите $\frac{dz}{dx}$.
- 4.6. Докажите, что дифференцируемая функция $z\left(x,y\right)$, определяемая уравнением $F\left(z^2-y^2,x^2+(y-z)^2\right)=0 \ ,$ где F- дифференцируемая функция, является решением уравнения $(z-y)^2\frac{\partial z}{\partial x}+xz\frac{\partial z}{\partial y}=xy$.

4.7. Проверьте, что дифференцируемая функция z(x,y), определяемая уравнением

$$F\bigg(x^2+y^2,\frac{z}{x}\bigg)=0\,,$$
 где $F-$ дифференцируемая функция, является решением уравнения
$$xy\frac{\partial z}{\partial x}-x^2\frac{\partial z}{\partial y}=yz\,.$$

4.8. Найдите первую и вторую производные, найдите все точки возможного экстремума, проверьте выполнение достаточных условий экстремума для дифференцируемой неявной функции y = f(x), определяемой уравнением F(x,y) = 0.

4.8.1.
$$F(x,y) = x^3 + y^3 - 3xy = 0$$
;

4.8.2.
$$F(x,y) = 8x^2y - x^4 - y^4 = 0$$
, $x > 0$, $y > 0$;

4.8.3.
$$F(x,y) = y^2 - ay - \sin x = 0$$
, $0 \le x \le 2\pi$.

4.9. Найдите частные производные первого порядка и первый дифференциал дифференцируемой функции z = z(x, y), заданной неявно уравнением

4.9.1.
$$xyz = x^2 + y^2 + z^2$$
;

4.9.2.
$$z \cos x + y \cos z + x \cos y = 3$$
;

4.9.3.
$$x^2 + zx + z^2 + y = 0$$
.

4.10. Пусть в окрестности точки (x_0, y_0, z_0) данное уравнение имеет единственное решение вида z = z(x, y). Найдите указанные частные производные функции z = z(x, y) в точке (x_0, y_0) .

4.10.1.
$$\operatorname{arctg} \frac{z}{x} = z + x + y; \frac{\partial z}{\partial x}, \quad \frac{\partial z}{\partial y}, \quad \frac{\partial^2 z}{\partial x^2};$$

4.10.2.
$$\ln(xy + yz) = z^2 + x^2 + y^2 - 2, \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, \frac{\partial^2 z}{\partial x \partial y}.$$

4.11. Найдите первый и второй дифференциалы функций u(x,y) и v(x,y), заданных неявно системой

уравнений
$$\begin{cases} xu + yv = 1, \\ x + y + u + v = 0. \end{cases}$$

4.12. Предполагая, что φ — дифференцируемая функция, проверьте выполнение равенства:

$$xz\frac{\partial z}{\partial x}+yz\frac{\partial z}{\partial y}=xy$$
 , если $z^2=xy+oldsymbol{arphi}igg(rac{y}{x}igg)$.

4.13. Преобразуйте уравнение, введя новые переменные.

4.13.1.
$$y^2 + (x^2 - xy)\frac{dy}{dx} = 0$$
, $y = tx$, $y = y(t)$;

4.13.2.
$$x^2 \frac{d^2 y}{dx^2} + 3x \frac{dy}{dx} + y = 0$$
, $x = e^t$, $y = y(t)$.

4.14. Приняв $\,v\,$ за новую функцию $\,v(x,y)\,$, преобразуйте уравнение

$$\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = -u, \quad u = ve^{-x-y}.$$

4.15. Приняв u и v за новые независимые переменные, а w за новую функцию от u и v, преобразуйте уравнение

4.15.1.
$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial x} = 4x$$
, $u = x$, $v = x - y$, $w = x - y + z$;

4.15.2.
$$\frac{\partial z}{\partial x} + \frac{1}{2}x \frac{\partial^2 z}{\partial x^2} = \frac{1}{y}, \quad u = \frac{y}{x}, \quad v = y, \quad w = zy - x.$$

4.16. Приняв u и v за новые независимые переменные, преобразуйте уравнение

$$\frac{\partial^2 z}{\partial x^2} + y^2 \frac{\partial^2 z}{\partial y^2} + \frac{1}{2} \frac{\partial z}{\partial y} = 0, \qquad u = x, \quad v = 2\sqrt{y}, \quad (y > 0).$$

5. Задачи повышенной трудности.

5.1. Найдите du и dv, если функции u=f(x,y), v=g(x,y), заданы неявно системой уравнений $\begin{cases} F\left(x,y,u,v\right)=0,\\ G\left(x,y,u,v\right)=0. \end{cases}$ Сформулируйте достаточные условия существования и

дифференцируемости неявных функций.

5.2. Найдите du и dv, если функции u = f(x,y), v = g(x,y), заданы неявно системой уравнений $\begin{cases} x = F(u,v), \\ y = G(u,v). \end{cases}$ Сформулируйте достаточные условия существования и дифференцируемости неявных функций.

Тема 7. Условный экстремум.

1. Определения.

- 1.1. Сформулируйте определение экстремума функции u(x,y) с условием связи f(x,y) = 0.
- 1.2. Сформулируйте определение экстремума функции u(x,y,z) с условием связи f(x,y,z)=0 .
- 1.3. Сформулируйте определение экстремума функции u(x,y,z) с двумя условиями связи $f(x,y,z)=0,\ g(x,y,z)=0$.

2. Основные теоремы (без доказательства).

- 2.1. Сформулируйте теорему о необходимых условиях экстремума функции u(x,y) с условием связи f(x,y) = 0 в форме Лагранжа.
- 2.2. Сформулируйте теорему о достаточных условиях экстремума функции u(x,y) с условием связи f(x,y) = 0 в форме Лагранжа.
- 2.3. Сформулируйте теорему о необходимых условиях экстремума функции u(x,y,z) с условием связи f(x,y,z) = 0 в форме Лагранжа.
- 2.4. Сформулируйте теорему о достаточных условиях экстремума функции u(x,y,z) с условием связи f(x,y,z) = 0 в форме Лагранжа.
- 2.5. Сформулируйте теорему о необходимых условиях экстремума функции u(x,y,z) с двумя условиями связи f(x,y,z) = 0, g(x,y,z) = 0 в форме Лагранжа.
- 2.6. Сформулируйте теорему о достаточных условиях экстремума функции u(x,y,z) с двумя условиями связи f(x,y,z) = 0, g(x,y,z) = 0 в форме Лагранжа.

3. Теоремы с доказательством.

- 3.1. Докажите теорему о необходимых условиях экстремума функции u(x,y) с условием связи f(x,y) = 0 в форме Лагранжа.
- 3.2. Докажите теорему о необходимых условиях экстремума функции u(x,y,z) с условием связи f(x,y,z) = 0 в форме Лагранжа.
- 3.3. Докажите теорему о необходимых условиях экстремума функции u(x,y,z) с двумя условиями связи f(x,y,z) = 0, g(x,y,z) = 0 в форме Лагранжа.

4. Вопросы и задачи.

- 4.1. Используя метод Лагранжа, найдите все точки экстремума функции u при заданных условиях связи.
 - 4.1.1. $u(x,y) = x^2 + y^2$ при условии x + y = 2;
 - 4.1.2. u(x,y) = x + y при условии $x^2 + y^2 = 2$;
 - 4.1.3. u(x,y) = x + y при условии xy = 1;
 - 4.1.4. u(x,y) = xy при условии $x^3 + y^3 2xy = 0$;
 - 4.1.5. u(x,y,z) = x + y + z при условии xyz = 1;
 - 4.1.6. $u(x,y,z) = x^2y^3z^4$ при условии 2x + 3y + 4z = 9;
 - 4.1.7. u(x,y,z) = xyz при условиях $x^2 + y^2 + z^2 = 1$, x + y + z = 0.

5. Задачи повышенной трудности.

- 5.1. Пусть в точке $N_0\left(x_0,y_0,\lambda\right)$ выполнены необходимые (в форме Лагранжа) условия экстремума функции $u\left(x,y\right)$ с условием связи f(x,y)=0 и к тому же $\operatorname{gradu}\left(x_0,y_0\right)\neq 0$, $\operatorname{gradf}\left(x_0,y_0\right)\neq 0$. Докажите, что в точке $M_0\left(x_0,y_0\right)$ градиенты функций $u\left(x,y\right)$ f(x,y) коллинеарны.
- 5.2. Пусть в точке $N_0\left(x_0,y_0,\lambda\right)$ выполнены необходимые (в форме Лагранжа) условия экстремума функции $u\left(x,y\right)$ с условием связи ax+by=c и $d^2u\Big|_{M_0}>0$, $M_0\left(x_0,y_0\right)$. Докажите, что в точке $M_0\left(x_0,y_0\right)$ имеет место экстремум указанной функции с указанным условием связи.
- 5.3. Пусть в точке $N_0\left(x_0,y_0,\lambda\right)$ выполнены необходимые (в форме Лагранжа) условия экстремума функции u(x,y)=ax+by с условием связи $f\left(x,y\right)=0$ и $d^2f\Big|_{M_0}>0$, $M_0\left(x_0,y_0\right)$. Докажите, что в точке $M_0\left(x_0,y_0\right)$ имеет место экстремум указанной функции с указанным условием связи.

Тема 8. Определённый интеграл.

1. Определения.

- 1.1. Сформулируйте определение интегральной суммы
- 1.2. Сформулируйте определение предела интегральных сумм при стремлении диаметра разбиения к нулю.
- 1.3. Сформулируйте определение нижней суммы (Дарбу).
- 1.4. Сформулируйте определение верхней суммы (Дарбу).
- 1.5. Сформулируйте определение предела верхних (нижних) сумм при стремлении диаметра разбиения к нулю.
- 1.6. Сформулируйте определение верхнего (нижнего) интеграла Дарбу.
- 1.7. Сформулируйте определение длины плоской кривой, заданной в параметрической форме.
- 1.8. Сформулируйте определение квадрируемой плоской фигуры.

2. Основные теоремы и формулы (без доказательства).

- 2.1. Перечислите свойства сумм Дарбу.
- 2.2. Сформулируйте лемму Дарбу.

- 2.3. Сформулируйте теорему о необходимом и достаточном условии интегрируемости функции f(x) на сегменте [a,b] в терминах нижнего и верхнего интегралов Дарбу.
- 2.4. Сформулируйте теорему о необходимом и достаточном условии интегрируемости функции f(x) на сегменте [a,b] в терминах нижних и верхних сумм.
- 2.5. Запишите формулу среднего значения и сформулируйте достаточные условия ее применимости.
- 2.6. Запишите формулу Ньютона Лейбница и сформулируйте достаточные условия ее применимости.
- 2.7. Запишите формулу замены переменной и сформулируйте достаточные условия ее применимости.
- 2.8. Запишите формулу интегрирования по частям и сформулируйте достаточные условия ее применимости.
- 2.9. Запишите формулу для вычисления длины дуги кривой, заданной параметрически, и сформулируйте достаточные условия ее применимости.
- 2.10. Запишите формулу прямоугольников приближенного вычисления определенных интегралов и выражение для остаточного члена этой формулы.
- 2.11. Запишите формулу трапеций приближенного вычисления определенных интегралов и выражение для остаточного члена этой формулы.
- 2.12. Запишите формулу парабол приближенного вычисления определенных интегралов и выражение для остаточного члена этой формулы.
- 2.13. Запишите формулу для вычисления длины дуги кривой, заданной уравнением $y = f(x), a \le x \le b$, и сформулируйте достаточные условия ее применимости.
- 2.14. Запишите формулу для вычисления площади криволинейной трапеции с помощью определенного интеграла.
- 2.15. Запишите формулу для вычисления площади криволинейного сектора помощью определенного интеграла.
- 2.16. Запишите формулу для вычисления массы кривой L на плоскости с помощью определенного интеграла, если кривая задана в параметрической форме: x=x(t), y=y(t), $a \le t \le b$; линейная плотность равна $\rho(t)$.
- 2.17. Запишите формулу для вычисления массы кривой L на плоскости с помощью определенного интеграла, если кривая задана уравнением y=y(x), $a \le x \le b$; линейная плотность равна $\rho(x)$.
- 2.18. Запишите формулу для вычисления x координаты центра масс кривой L на плоскости с помощью определенного интеграла, если кривая задана уравнением y = y(x), $a \le x \le b$. Линейная плотность постоянна.
- 2.19. Запишите формулу для вычисления y координаты центра масс кривой L на плоскости с помощью определенного интеграла, если кривая задана уравнением y = y(x), $a \le x \le b$; линейная плотность постоянна.
- 2.20. Запишите формулу для вычисления x координаты центра масс кривой L на плоскости с помощью определенного интеграла, если кривая задана в параметрической форме: x = x(t), y = y(t), $a \le t \le b$; линейная плотность постоянна.
- 2.21. Запишите формулу для вычисления y координаты центра масс кривой L на плоскости с помощью определенного интеграла, если кривая задана в параметрической форме: x = x(t), y = y(t), $a \le t \le b$; линейная плотность постоянна.
- 2.22. Запишите формулу для вычисления момента инерции относительно оси Ox кривой L на плоскости с помощью определенного интеграла, если кривая задана в параметрической форме: x = x(t), y = y(t), $a \le t \le b$; линейная плотность постоянна и равна 1.

- 2.23. Запишите формулу для вычисления момента инерции относительно оси Oy кривой L на плоскости с помощью определенного интеграла, если кривая задана в параметрической форме: x = x(t), y = y(t), $a \le t \le b$; линейная плотность постоянна и равна 1.
- 2.24. Запишите формулу для вычисления момента инерции относительно оси Ox кривой L на плоскости с помощью определенного интеграла, если кривая задана уравнением y = f(x), $a \le x \le b$; линейная плотность постоянна и равна 1.
- 2.25. Запишите формулу для вычисления момента инерции относительно оси Oy кривой L на плоскости с помощью определенного интеграла, если кривая задана уравнением y = f(x), $a \le x \le b$; линейная плотность постоянна и равна 1.

3. Теоремы с доказательством.

- 3.1. Пусть разбиение T' отрезка [a;b] получено из разбиения T путем добавления к нему новых точек. Докажите, что нижняя сумма функции f(x) для разбиения T' не меньше, чем нижняя сумма для разбиения T.
- 3.2. Пусть разбиение T' отрезка [a;b] получено из разбиения T путем добавления к нему новых точек. Докажите, что верхняя сумма функции f(x) для разбиения T' не больше, чем верхняя сумма для разбиения T.
- 3.3. Докажите, что нижняя сумма функции f(x) для любого разбиения T отрезка [a;b] не превосходит верхней суммы той же функции f(x) для любого другого разбиения T' отрезка [a;b].
- 3.4. Докажите, что множество верхних сумм функции f(x) для всевозможных разбиений отрезка [a;b] ограничено снизу.
- 3.5. Докажите, что множество нижних сумм функции f(x) для всевозможных разбиений отрезка [a;b] ограничено сверху.
- 3.6. Докажите, что нижний интеграл Дарбу не превосходит верхнего интеграла Дарбу.
- 3.7. Докажите лемму Дарбу
- 3.8. Докажите теорему о необходимом и достаточном условии интегрируемости функции f(x) на сегменте [a;b] в терминах нижнего и верхнего интегралов Дарбу.
- 3.9. Докажите теорему о необходимом и достаточном условии интегрируемости функции f(x) на сегменте [a;b] в терминах нижних и верхних сумм.
- 3.10. Докажите теорему об интегрируемости непрерывной на сегменте функции.
- 3.11. Докажите теорему об интегрируемости некоторых разрывных на сегменте функций.
- 3.12. Докажите теорему об интегрируемости монотонной на сегменте функции.
- 3.13. Докажите теорему о формуле среднего значения.
- 3.14. Докажите теорему о существовании первообразной непрерывной функции.
- 3.15. Докажите теорему о формуле Ньютона Лейбница.
- 3.16. Докажите теорему о формуле замены переменной.
- 3.17. Докажите теорему о формуле интегрирования по частям.
- 3.18. Докажите теорему о вычислении длины дуги кривой с помощью определённого интеграла.
- 3.19. Докажите теорему о вычислении площади криволинейной трапеции с помощью определенного интеграла.
- 3.20. Докажите теорему о формуле прямоугольников приближенного вычисления определенных интегралов.

4. Вопросы и задачи.

4.1. Пусть разбиение T' отрезка [a;b] получено из разбиения T путем добавления к нему p новых точек. Дайте оценку разности верхних сумм функции f(x) для разбиений T и T'.

- 4.2. Пусть разбиение T' отрезка [a;b] получено из разбиения T путем добавления к нему p новых точек. Дайте оценку разности нижних сумм функции f(x) для разбиений T и T'.
- 4.3. Пусть разбиение T' получено путем добавления к разбиению T некоторого числа новых точек. Как изменится при этом верхняя сумма ?
- 4.4. Пусть b(x) дифференцируемая функция, f(x) непрерывная функция. Найдите $\frac{d}{dx} \left(\int\limits_{a}^{b(x)} f(t) \, dt \right).$
- 4.5. Пусть a(x) и b(x) дифференцируемые функции, f(x) непрерывная функция. Найдите $\frac{d}{dx}\Biggl(\int\limits_{a(x)}^{b(x)}f(t)\,dt\Biggr).$
- 4.6. Используя определённый интеграл, запишите формулу для вычисления x координаты центра масс однородной фигуры D на плоскости (x;y), заданной системой неравенств $a \le x \le b$, $\varphi_1(x) \le y \le \varphi_2(x)$, все указанные функции непрерывны.
- 4.7. Используя определённый интеграл, запишите формулу для вычисления y координаты центра масс однородной фигуры D на плоскости (x;y), заданной системой неравенств $a \le x \le b$, $\varphi_1(x) \le y \le \varphi_2(x)$, все указанные функции непрерывны.
- 4.8. Пусть фигура D на плоскости (x;y) задана системой неравенств $a \le x \le b$, $0 \le \varphi_1(x) \le y \le \varphi_2(x)$, все указанные функции непрерывны. Используя определённый интеграл, запишите формулу для вычисления объёма тела G, которое получается в результате вращения фигуры D вокруг оси x.
- 4.9. Пусть фигура D на плоскости (x;y) задана системой неравенств $a \le x \le b$, $0 \le \varphi_1(x) \le y \le \varphi_2(x)$, все указанные функции непрерывны. Используя определённый интеграл, запишите формулу для вычисления x координаты центра масс однородного тела G, которое получается в результате вращения фигуры D вокруг оси Ox.
- 4.10. Вычислите $\int_{0}^{2\pi} \frac{dx}{2-\sin x}$; $\int_{-2}^{-1} \frac{dx}{x\sqrt{x^2+1}}$; $\int_{0}^{1/2} \frac{dx}{\left(x^2+x+1\right)(x-1)} dx$; $\int_{0}^{\pi} e^{2x} \cos 3x dx$; $\int_{1}^{e} \ln x dx$; $\int_{0}^{\pi/8} \frac{dx}{\sin^4 x + \cos^4 x}$.
- 4 11 Найлите

$$\frac{d}{dx} \int_{0}^{x} \sin t^{2} dt; \quad \frac{d}{dx} \int_{x}^{1} \arcsin \sqrt{t} dt; \quad \frac{d}{dx} \int_{0}^{x^{2}} \ln \left(\frac{2t^{2}}{1 + \operatorname{arctg}^{2} t + \sin^{4} t} \right) dt; \quad \frac{d}{dx} \int_{\operatorname{arctg} x}^{\cos x} e^{-t^{2}} dt;$$

$$\frac{d}{db} \int_{0}^{b} \sin \left(x^{2} \right) dx; \quad \frac{d}{dx} \int_{0}^{x^{2}} \sqrt{1 + t^{2}} dt.$$

- 4.12. Вычислите площадь фигуры, ограниченной кривой:
 - 4.12.1. $x^2 + y^2 = 2x$;

4.12.2.
$$(x^2 + y^2)^2 = (x^2 - y^2), \quad x > 0;$$

- 4.13. Вычислить площадь фигуры, заданной неравенствами:
 - 4.13.1. $0 \le x \le 3$, $0 \le y \le x(3-x)^2$;
 - 4.13.2. $0 \le x \le 5$, $0 \le y \le x^2(5-x)$;
 - 4.13.3. $(x^2 + y^2)^{1.75} \le y^2 \sqrt{x}$, $x \ge 0$, $y \ge 0$;
 - 4.13.4. $(x^2 + y^2)^2 \le xy^2$, $x \ge 0$, $y \ge 0$.

- 4.14. Вычислите длину кривой $y = \frac{2}{3} x \sqrt{x}$, $0 \le x \le 3$.
- 4.15. Вычислите массу кривой $y = \frac{2}{3}x\sqrt{x}$, $0 \le x \le 3$ с линейной плотностью $\rho(x) = 2\sqrt{1+x}$.
- 4.16. Вычислите x -координату центра масс кривой $x = \cos t$, $y = \sin t$, $0 \le t \le \frac{\pi}{2}$, если линейная плотность постоянна.
- 4.17. Вычислите момент инерции относительно оси Ox кривой $x=\cos t$, $y=\sin t$, $0\le t\le \pi$, если линейная плотность $\rho\equiv 1$.
- 4.18. Вычислите момент инерции относительно оси Ox кривой $x=\cos t$, $y=\sin t$, $0\le t\le \pi$; линейная плотность $\rho(t)=\sin t$.
- 4.19. Вычислите координаты центра масс и моменты инерции относительно координатных осей плоской фигуры, ограниченной линиями $x=1, \quad x=2, \quad y=0, \quad y=x$; поверхностная плотность $\rho\equiv 1$.
- 4.20. Вычислите координаты центра масс плоской фигуры, ограниченной кривыми $y = \cos x, \quad y = \sin x \quad (0 \le x \le 2\pi)$; поверхностная плотность $\rho \equiv 1$.
- 4.21. Вычислите момент инерции относительно оси Oy плоской фигуры, ограниченной линиями $x=0, \quad x=1, \quad y=0, \quad y=\arcsin x$; поверхностная плотность $\rho(x)\equiv 1$.
- 4.22. Найдите объём тела, поверхность которого задана уравнением $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.
- 4.23. Найдите объём усеченного конуса, основания которого ограничены эллипсами с полуосями $A,\,B$ и $a,\,b,$ а высота равна h .
- 4.24. Найдите объем тела, полученного вращением вокруг оси Ox фигуры G , заданной системой неравенств $0 \le x \le 2$, $0 \le y \le x$.
- 4.25. Найдите объем тела, полученного вращением вокруг оси Oy фигуры G , заданной системой неравенств $0 \le x \le 2$, $0 \le y \le x$.
- 4.26. Найдите объем тела, полученного вращением вокруг оси Ox фигуры G, заданной системой неравенств $0 \le x \le 2$, $0 \le y \le x^2(2-x)$.
- 4.27. Найдите объем тела, полученного вращением вокруг оси Oy фигуры G , заданной системой неравенств $0 \le x \le 2$, $0 \le y \le x^2(2-x)$.

- 5.1. Вычислите верхнюю сумму Дарбу для функции $y = e^x$ на отрезке [0,1] в случае разбиения этого отрезка на N равных частей. Найдите предел полученного выражения при $N \to \infty$.
- 5.2. Вычислите нижнюю сумму Дарбу для функции $y=e^x$ на отрезке [0,1] в случае разбиения этого отрезка на N равных частей. Найдите предел полученного выражения при $N \to +\infty$.
- 5.3. Вычислите верхнюю сумму Дарбу для функции $f(x) = x^2$ на отрезке [0;1] в случае разбиения этого отрезка на N равных частей. Найдите предел полученного выражения при $N \to +\infty$. Можно использовать формулу $\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$.
- 5.4. Вычислите нижнюю сумму Дарбу для функции $f(x) = \ln x$ на отрезке [1;2] в случае разбиения этого отрезка на N равных частей. Найдите предел полученного выражения при $N \to +\infty$. Можно использовать формулу Стирлинга $n! = n^n e^{-n} \sqrt{2\pi n} (1+o(1))$ при $n \to +\infty$.

- 5.5. Вычислите верхнюю сумму Дарбу для функции $f(x) = \ln x$ на отрезке [1;2] в случае разбиения этого отрезка на N равных частей. Найдите предел полученного выражения при $N \to +\infty$. Можно использовать формулу Стирлинга $n! = n^n e^{-n} \sqrt{2\pi n} (1 + o(1))$ при $n \to +\infty$.
- 5.6. Вычислите нижнюю сумму Дарбу для функции f(x) на отрезке [0;1] в случае разбиения этого отрезка на N равных частей. Найдите предел при $N \to +\infty$.

5.6.1.
$$f(x) = x^2$$
 Можно использовать формулу $\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$.

5.6.2.
$$f(x)=x^3$$
 . Можно использовать формулу $\sum_{k=1}^n k^3=\frac{(n+1)^4}{4}-\frac{(n+1)^3}{2}+\frac{(n+1)^2}{4}$.

5.6.3.
$$f(x) = x^4$$
. Можно использовать формулу $\sum_{k=1}^n k^p = \frac{(n+1)^{p+1}}{p+1} \left(1 + o\left(\frac{1}{n}\right)\right)$ при $n \to \infty$ для любого натурального p .

- 5.7. Докажите, что если функция f(x) интегрируема на сегменте [a,b], то функция |f(x)| также интегрируема на этом сегменте.
- 5.8. Приведите пример функции f(x), такой, что $\int_a^b |f(x)| \, dx$ существует, а $\int_a^b f(x) dx$ не существует.
- 5.9. Докажите интегрируемость произведения интегрируемых функций.
- 5.10. Докажите, что если функция f(x) интегрируема на сегменте $\begin{bmatrix} a,b \end{bmatrix}$ и $\inf_{[a,b]} f(x) > 0$, то

функция $\frac{1}{f(x)}$ также интегрируема на этом сегменте.

Тема 9. Кратные интегралы.

1. Определения.

- 1.1. Дайте определение интегральной суммы для двойного интеграла.
- 1.2. Для двойного интеграла дайте определение предела интегральных сумм при стремлении диаметра разбиения к нулю.

2. Основные теоремы (без доказательства).

- 2.1. Сформулируйте теорему о сведении двойного интеграла к повторному.
- 2.2. Сформулируйте теорему о формуле замены переменных для двойного интеграла.

3. Теоремы с доказательством.

- 3.1. Докажите теорему о сведении двойного интеграла к повторному.
- 3.2. Докажите теорему о формуле замены переменных в двойном интеграле для случая линейной замены переменных.

4. Вопросы и задачи.

4.1. Измените порядок интегрирования в повторных интегралах. Вычислите повторный интеграл.

$$\int_{0}^{1} dy \int_{y}^{1} xy dx \; ; \quad \int_{0}^{\pi} dx \int_{0}^{\sin x} 2y dy \; ; \quad \int_{0}^{1} dx \int_{x^{2}}^{\sqrt{x}} 2y dy \; ; \quad \int_{0}^{1} dx \int_{\arcsin x}^{\pi/2} \cos y dy \; .$$

- 4.2. Сведите двойной интеграл $\iint_{\Sigma} f(x,y) dx dy$ к повторному двумя способами:
 - 4.2.1. $D = \{(x,y) : |x| + |y| \le 1\};$
 - 4.2.2. $D = \{(x,y) : y^2 \le x + 2, y \ge x\}.$
- 4.3. Вычислите

4.3.1.
$$\iint_G (x^2 + y^2) dxdy$$
, $D = \{x^2 + y^2 \le 6\}$;

4.3.2.
$$\iint_{\Omega} (x^2 - y^2) dx dy, \quad D = \{1 \le x^2 + y^2 \le 4\} \cap \left\{ \frac{\pi}{6} \le \arctan \frac{y}{x} \le \frac{\pi}{4} \right\} \cap x > 0.$$

- 4.4. Найдите замену переменных $(u,v) \leftrightarrow (x,y)$, при которой область D на плоскости (x,y), ограниченная линиями $y^2 = 16x$, $y^2 = 9x$, x = 2y, x = 4y, переходит в прямоугольник на плоскости (u,v). Вычислите площадь области D, используя замену переменных в двойном интеграле.
- 4.5. Найдите замену переменных $(u,v) \leftrightarrow (x,y)$, при которой область D на плоскости (x,y), ограниченная линиями $xe^y=1, \quad xe^y=2, \quad x=e^y, \quad x=2e^y$, переходит в прямоугольник на плоскости (u,v). Вычислите площадь области D, используя замену переменных в двойном интеграле.
- 4.6. Вычислите массу $m=\iint_G dx dy$, статические моменты $M_x=\iint_G y dx dy$, $M_y=\iint_G x dx dy$ и моменты инерции $I_x=\iint_G y^2 dx dy$, $I_y=\iint_G x^2 dx dy$ однородной пластинки с плотностью $\rho=1$, ограниченной линиями
 - 4.6.1. $0 \le x \le 2, 0 \le y \le x$;
 - 4.6.2. $0 \le x \le 4, 0 \le y \le x(4-x)$;
 - 4.6.3. $0 \le x \le \pi, 0 \le y \le \sin x;$
 - 4.6.4. $10^{-3} \le x \le 1, 0 \le y \le x^{-1}$.
- 4.7. Изобразите на плоскости (x,y) область D, для которой верна формула сведения двойного интеграла к повторному: $\iint_D f(x,y) \, dx dy = \int_{-1}^1 dy \int_{y}^{3-2y} f(x,y) \, dx$. Измените порядок интегрирования.
- 4.8. Изобразите на плоскости (x,y) область D, для которой верна формула сведения двойного интеграла к повторному: $\iint_D f(x,y) \, dx dy = \int_{-1}^1 dy \int_{-2y}^{1-y} f(x,y) \, dx$. Вычислите указанный интеграл для f(x,y) = y.
- 4.9. Вычислите координаты центра масс и моменты инерции плоской фигуры относительно осей координат, если фигура ограничена линиями $x=1, \quad x=2, \quad y=0, \quad y=x$; поверхностная плотность $\rho\equiv 1$.
- 4.10. Вычислите координаты центра масс плоской фигуры, ограниченной кривыми $y = \cos x, \quad y = \sin x \quad \left(\pi \, / \, 4 \le x \le 5\pi \, / \, 4 \right);$ поверхностная плотность $\rho \equiv 1$.
- 4.11. Вычислите момент инерции относительно оси Oy плоской фигуры, ограниченной линиями $x=0, \quad x=1, \quad y=0, \quad y=\arcsin x$; поверхностная плотность $\rho(x)\equiv 1$.
- 4.12. Вычислите тройной интеграл $\iiint_G (x^2+y^2) dx dy dz$, где область G ограничена поверхностями $x^2+y^2=2z, \ z=2.$

Московский государственный университет

Физический факультет

- 4.13. Сведите тройной интеграл $\iiint f(x,y,z) dx dy dz$ к повторному, если G область, ограниченная поверхностями x = 0, y = 0, z = 0, x + y + z = 2.
- 4.14. Вычислите моменты инерции относительно координатных плоскостей однородного тела (плотность $\rho = 1$), ограниченного поверхностями $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, z = 0, $(z \ge 0)$.
- 4.15. Вычислите координаты центра масс и момент инерции относительно начала координат тела с плотностью $\rho(x,y,z) = x^2 + y^2 + z^2$, ограниченного поверхностями $x^{2} + y^{2} + z^{2} = 4$, $x^{2} + y^{2} = z^{2}$ $(z \ge 0)$.
- 4.16. Пусть G тело, ограниченное поверхностями $x^2+y^2+z^2=4,\quad z=1\quad (z\geq 1)$. Найдите силу притяжения этим телом материальной точки массы m_0 , находящейся в начале координат.

Тема 10. Криволинейные интегралы.

1. Определения.

- 1.1. Сформулируйте определение криволинейного интеграла I рода от функции f(x,y) по заданной
- кривой.
 1.2. Сформулируйте определение криволинейного интеграла II рода $\int\limits_{AB} P(x,y) dx$.
 1.3. Сформулируйте определение криволинейного интеграла II рода $\int\limits_{AB} Q(x,y) dy$.

2. Основные теоремы и формулы (без доказательства).

- Основные теоремы и формулы (осз доказательство). 2.1. Сформулируйте достаточные условия существования криволинейного интеграла $\int_L f(x,y) dl$ по кривой L.
- 2.2. Сформулируйте достаточные условия существования криволинейного интеграла $\int_{AB} P(x,y) dx$. 2.3. Сформулируйте достаточные условия существования криволинейного интеграла $\int_{AB} Q(x,y) dy$.
- 2.4. Запишите формулу Грина и сформулируйте достаточные условия применимости.

3. Теоремы с доказательством.

- 3.1. Докажите теорему о вычислении криволинейного интеграла первого рода с помощью определённого интеграла.
- 3.2. Докажите теорему о вычислении криволинейного интеграла второго рода с помощью определённого интеграла.
- 3.3. Докажите теорему об условиях независимости криволинейного интеграла второго рода от пути интегрирования.
- 3.4. Докажите теорему о достаточных условиях того, что выражение P(x,y) dx + Q(x,y) dyявляется полным дифференциалом.
- 3.5. Пусть функции P(x,y) и Q(x,y) таковы, что криволинейный интеграл второго рода $\int_{\mathbb{Q}_R} P(x,y) dx + Q(x,y) dy$ не зависит от пути интегрирования. Докажите, что $\frac{\partial P}{\partial u} = \frac{\partial Q}{\partial x}$.
- 3.6. Пусть функции P(x,y) и Q(x,y) таковы, что выражение P(x,y)dx + Q(x,y)dy представляет собой полный дифференциал. Докажите, что $\frac{\partial P}{\partial u} = \frac{\partial Q}{\partial x}$.
- 3.7. Докажите теорему о формуле Грина.

- 4.1. Выразите криволинейный интеграл $\int f(x,y) dl$ через определённый интеграл.
- 4.2. Выразите криволинейный интеграл $\int_{AB} P(x,y) dx$ через определённый интеграл. 4.3. Выразите криволинейный интеграл $\int_{AB} Q(x,y) dy$ через определённый интеграл.
- 4.4. Вычислите значение интеграла $\iint_{r} \left[x\cos\left(\mathbf{n},x\right)+y\cos\left(\mathbf{n},y\right)\right]ds$, где L —замкнутый контур, n внешняя нормаль к L.
- 4.5. Докажите, что если L замкнутый контур и 1 постоянный вектор, то $\iint \cos(\mathbf{l}, \mathbf{n}) ds = 0$.
- 4.6. Пусть G ограниченная область на плоскости с гладкой границей L. Запишите формулу, выражающую площадь области G через интеграл вида $\iint f(x,y) dx$.
- 4.7. Пусть G ограниченная область на плоскости с гладкой границей L и площадью S. Запишите формулу для вычисления x – координаты центра масс области G через интеграл вида $\iint f(x,y) dx$, если поверхностная плотность равна 1.
- 4.8. Пусть G ограниченная область на плоскости с гладкой границей L и площадью S. Запишите формулу для вычисления y – координаты центра масс области G через интеграл вида $\iint f(x,y) dy$, если поверхностная плотность равна 1.
- 4.9. Пусть D ограниченная область на плоскости с гладкой границей L. Запишите в виде двойного интеграла по области D формулу для вычисления работы силы $\vec{F}(x,y) = (P(x,y);Q(x,y))$ при перемещении материальной точки по замкнутому контуру L против часовой стрелки, если все функции непрерывно дифференцируемы в D.
- 4.10. Вычислите криволинейные интегралы первого рода

4.10.1.
$$\int_{L} 1 ds$$
 , где L – кривая $x=t, \quad y=\frac{t^2}{2}, \ 0 \leq t \leq 1;$

4.10.2.
$$\int\limits_{L}^{z} y ds$$
 , где L – кривая $y=e^{x}$, $0 \le x \le 2$;

4.10.3.
$$\int_{L}^{L} xy dl$$
, где L – часть ломаной линии $x+y=1, x-y=-1, -1 \le x \le 1, 0 \le y \le 1$.

4.10.4.
$$\int_I x^2 y dl$$
, где $L = \left\{ (x,y) : x = 4\cos t, \ y = \sin 2t, \ 0 \le t \le \frac{\pi}{2} \right\}$.

- 4.11. Найдите координаты силы притяжения материальной точки массы m однородной полуокружностью массой M и радиусом R; точка помещена в центре соответствующей окружности.
- 4.12. Вычислите криволинейные интегралы второго рода:

4.12.1.
$$\int_{AB} x dx + y dy$$
, где кривая AB задана уравнением $y = x^2$, $A(0,0)$, $B(1,1)$

4.12.1.
$$\int\limits_{AB} x dx + y dy$$
, где кривая AB задана уравнением $y = x^2$, $A(0,0)$, $B(1,1)$.
4.12.2. $\int\limits_{L} (2-y) dx + x dy$, где кривая L задана уравнениями $x = t - \sin t$, $y = 1 - \cos t$, $0 \le t \le 2\pi$ и пробегается в направлении возрастания параметра t .

- 4.12.3. $\iint\limits_{L}xdy+2ydx$, где кривая L задана соотношениями y = 0, $y = \sqrt{1 - x^2}$, y = x, 0 < y < x.
- 4.12.4. $\int\limits_L xydx-x^3y^3dy$, где L замкнутый контур, заданный уравнением |x-y|+|x+y|=1 . 4.12.5. $\int\limits_L ydx+zdy+xdz$, где L кривая $x=\cos t,\ y=\sin t,\ z=t\,,\ 0\le t\le 2\pi$, пробегаемая в

направлении возрастания параметра t.

- 4.13. С помощью криволинейного интеграла найдите площадь области, ограниченной:
 - 4.13.1. эллипсом $x = a \sin t$, $y = b \cos t$, $0 \le t \le 2\pi$, a > 0, b > 0;
 - 4.13.2. параболой $(x+y)^2 = 2ax$ (a>0) и осью Ox.
 - 4.13.3. астроидой $x^{\frac{3}{2}} + y^{\frac{3}{2}} = a^{\frac{3}{2}}$.
- 4.14. Вычислите моменты инерции относительно осей координат кривой, заданной как пересечение поверхности $2x^2 + y^2 - \overline{z}^2 = -1$ и плоскости z = x + 1.
- 4.15. Вычислите работу силы $\mathbf{F} = \left\{ x y, 2x + y^2 \right\}$ вдоль части параболы $x = y^2$, пробегаемой от точки A(1, -1) до точки B(1, 1).
- 4.16. Вычислите работу силы $\mathbf{F} = \{y, x\}$ вдоль контура, заданного как пересечение эллипсоида $3x^2 + y^2 + z^2 = 4$ и плоскости z = x - 2, пробегаемого против часовой стрелки, если смотреть из точки (0,0,-3).
- 4. Задачи повышенной трудности.
 - 4.14. Пусть число l(t) равно длине кривой L на плоскости, заданной уравнением $y = \frac{x^2}{2}$, $0 \le x \le t$. Найдите $\lim_{t\to\infty}\frac{l(t)}{t^2}$.
 - 4.15. Пусть функции u(x,y), v(x,y) и их частные производные первого и второго порядка непрерывны в замкнутой области G, ограниченной гладкой кривой L. Докажите, что справедлива формула: $\iint\limits_{L} \left| \frac{u}{\frac{\partial u}{\partial m}} - \frac{\partial v}{\frac{\partial v}{\partial m}} \right| dl = \iint\limits_{G} \left| \frac{u}{\Delta u} - \frac{v}{\Delta v} \right| dx dy \text{ (вторая формула Грина), где } \frac{\partial u}{\partial n} - \frac{\partial v}{\partial n} \right| dx dy \text{ (вторая формула Грина), где } \frac{\partial u}{\partial n} - \frac{\partial v}{\partial n} + \frac$

производная по направлению внешней нормали к L, $\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$, а интеграл в левой части есть криволинейный интеграл первого рода.

- 4.16. Вычислите интеграл $I = \prod (x \cos \alpha + y \cos \beta) dl$, где L замкнутая гладкая кривая, ограничивающая область площади S; α и β - углы между вектором внешней нормали \mathbf{n} к кривой L в точке M(x,y) и осями Ox и Oy.
- 4.17. Докажите, что если функция u(x,y) имеет в замкнутой области G непрерывные производные второго порядка, то справедлива формула $\iint\limits_{C} \left| \left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 \right| dx dy = -\iint\limits_{C} u \Delta u dx dy + \int\limits_{L} u \frac{\partial u}{\partial n} dl,$ где L – гладкий контур, ограничивающий область G, $\frac{\partial u}{\partial n}$ - производная по направлению внешней нормали к L.

4.18. Применяя формулу Грина, найти $\lim_{d(S)\to 0} \frac{1}{S} \iint_L (\mathbf{F} \cdot \mathbf{n}) \, dl$, где S – площадь области, ограниченной контуром L, окружающим точку (x_0, y_0) , d(S) - диаметр области S, \mathbf{n} – единичный вектор внешней нормали к контуру L и $\mathbf{F}\{x,y\}$ - вектор, непрерывно дифференцируемый в области S.

Тема 11. Кривые на плоскости.

Определения.

- 1.1. Сформулируйте определение того, что две кривые касаются (соприкасаются) в данной точке.
- 1.2. Сформулируйте определение порядка касания кривых в данной точке.
- 1.3. Сформулируйте определение огибающей однопараметрического семейства плоских кривых.
- 1.4. Сформулируйте определение кривизны плоской кривой.

2. Основные теоремы и формулы (без доказательства).

- 2.1. Сформулируйте теорему о необходимых и достаточных условиях для того, чтобы порядок касания двух кривых в данной точке был равен n.
- 2.2. Сформулируйте теорему о необходимых условиях огибающей однопараметрического семейства кривых.
- 2.3. Запишите формулу для вычисления кривизны плоской кривой, заданной в виде y = f(x).
- 2.4. Запишите формулу для вычисления радиуса кривизны в заданной точке кривой y = f(x).
- 2.5. Запишите формулу для вычисления кривизны плоской кривой, заданной в параметрической форме.

3. Теоремы с доказательством.

- 3.1. Докажите теорему о необходимых и достаточных условиях для того, чтобы порядок касания двух кривых в данной точке был равен n.
- 3.2. Докажите теорему о необходимых условиях огибающей однопараметрического семейства кривых.
- 3.3. Выведите формулу для вычисления кривизны кривой, заданной уравнением y = f(x).
- 3.4. Выведите формулу для вычисления кривизны кривой, заданной в параметрической форме.

4. Вопросы и задачи.

4.1. Какой порядок касания с осью Ox имеют в начале координат кривые: $y = 1 - \cos x$;

$$y = e^x - \left(1 + x + \frac{x^2}{2}\right); \quad y = \operatorname{tg} x - \sin x.$$

- 4.2. При каком выборе коэффициентов a, b и c парабола $y=ax^2+bx+c$ и кривая $y=e^x$ имеют в точке с абсциссой $x=x_0$ касание второго порядка?
- 4.3. Найдите огибающие однопараметрических семейств плоских кривых (C параметр): $y = Cx + \frac{a}{C}$ ($a = \mathrm{const}$); $y = Cx \ln C$; $2C^2 (y Cx) = 1$; $y^2 = 2Cx + C^2$.
- 4.4. Определите радиус кривизны параболы $y^2 = 2px$ в точке $(x_0, \sqrt{2px_0})$.

- 5.1. Выведите формулу для вычисления кривизны плоской кривой, заданной в неявной форме.
- 5.2. Выведите формулу для вычисления радиуса кривизны плоской кривой, заданной в неявной форме.
- 5.3. Определите радиусы кривизны следующих кривых в произвольной точке:

$$(x-x_0)^2 + (y-y_0)^2 = R^2;$$
 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1;$ $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.$